Synergistic inhibition of the concerted action of six *Staphylococcus aureus* cytotoxins with ASN100, a combination of two human monoclonal antibodies

Harald Rouha, Barbara Maierhofer, Karin Gross, Adriana Badarau, Ivana Dolezilkova, Susanne Weber, Lukas Stulík, Eszter Nagy
Arsanis Biosciences GmbH, Vienna, Austria

Abstract

Background: Staphylococcus aureus pathogenesis involves pore-forming cytotoxins capable of lysing a broad range of human cells. Alpha-hemolysin (Hla) is a key toxin responsible for lung epithelial cell lysis, facilitating pneumonia and systemic invasion. In addition up to five bi-component leukotoxins are produced by *S. aureus* that target immune cells, primarily neutrophils that are essential for bacterial clearance.

Two human monoclonal antibodies (mAbs) have been developed: ASN-1, which is cross-reactive to Hla and four leukotoxins (LukSF [PVL], LukED, HigAB, and HigCR), and ASN-2, targeting the fifth leukotoxin LukGH (LukAB). In this study, we tested the synergistic effect of the mAb combination (ASN100) in inhibiting the activity of *S. aureus* cytotoxins in vitro.

Methods: The two mAbs were tested alone or in combination in several in vitro toxin neutralization assays with recombinant toxins produced in *E. coli* or with native toxins either secreted into the culture supernatants by clinical *S. aureus* isolates or produced in situ during infection. The Hla-neutralizing effect was demonstrated in a human 3D lung epithelial tissue model. The protective effect towards human neutrophils was evaluated in luminescent cell viability assays, by microscopy, and in ex vivo infection assays with live bacteria.

Results: ASN300 was highly potent in neutralizing the tissue destructive effect of Hla in a human 3D lung tissue model upon infection with *S. aureus*. While ASN-1 alone was able maintain the integrity and barrier function of the epithelial cell layer, a combination of both mAbs was required to neutralize leukotoxins. ASN100 neutralized toxicity in diverse in vitro models with human leukocytes and a broad panel of clinically relevant *S. aureus* isolates.

Conclusions: ASN-1 and ASN-2 act synergistically to prevent epithelial tissue damage and phagocyte lysis neutralizing the concerted action of six different *S. aureus* cytotoxins.

Both mAbs are required to prevent neutrophil death

ASN100 neutralizes toxicity of diverse clinical isolates

ASN-2 dominates during PMN ex vivo infection

ASN100 spiked into plasma samples obtained from mechanically ventilated patients significantly increases neutralizing titers

Conclusion and Outlook

ASN-1 and ASN-2 act synergistically to prevent epithelial tissue damage and phagocyte lysis by neutralizing the concerted action of six different *S. aureus* cytotoxins. Although ASN-2 is only targeting one single leukocidin, it is a critical and highly important ASN100 component. ASN100 is currently being studied in a Phase 2 clinical trial for the prevention of pneumonia in mechanically-ventilated patients who are heavily colonized with *S. aureus*.

Disclosure, References and Contact Info

Disclosure: All authors are employees of Arsanis Biosciences GmbH and hold shares in the company. References: Rouha H, Badarau A, Viramí ZC, et al. mAbs 2015;7(1):243-54; Badarau A, Rouha H, Mafalla S, et al. mAbs 2016;8(7):1347-60. Contact: Harald Rouha, Arsanis Biosciences GmbH, Helmut-Quattinger-Gasse 2, 1030 Vienna, Austria; harald.rouha@arsanis.com