ABSTRACT

This included serum volume (V1), central volume of distribution (Vc), and population mean (\(\bar{V}_p\)) for both ASN1 and ASN2. There was excellent agreement between the observed serum concentrations and the individual post-hoc predictions (\(r^2 = 0.97\) and \(0.99\), respectively). There was excellent agreement between the individual post-hoc parameters. The population mean (CL) was 0.367 and 0.212 L/h and Vc was 3.84 and 4.17 L/or.

OBJECTIVES

To develop a mammillary structural population PK model to describe the time course of both ASN1 and ASN2 following IV administration to healthy subjects. A population pharmacokinetic (PK) model was developed for both ASN1 and ASN2 following monotherapy or combined administration as ASN100.

RESULTS

mPBPK model for both ASN1 and ASN2. There was excellent agreement between the individual post-hoc parameters. The population mean (CL) was 0.367 and 0.212 L/h and Vc was 3.84 and 4.17 L/or.

CONCLUSIONS

A mammillary linear 2-CMT model best described the time-course of both ASN1 and ASN2 following IV administration to healthy subjects when given as monotherapy or as combined administration.

A mPBPK model was also successfully developed to adequately describe the time-course of both ASN1 and ASN2 following IV administration as ASN100. This more physiologically relevant model will allow for better CL and Vc predictions and more accurate dosing in the nebulization in the lungs of patients with 2. Cystic fibrosis pulmonary disease.

REFERENCES
